Tuesday, March 4, 2025

magnetic lyddane sachs teller discovery

New Magnetic Discovery: Unraveling the Lyddane-Sachs-Teller Relation's Counterpart

Understanding the Lyddane-Sachs-Teller Relation

This diagram outlines the principle behind terahertz EPR ellipsometry. A terahertz light beam, polarized in a specific direction, is directed onto the sample surface. When exposed to a strong magnetic field, the unpaired spins within the material precess, interacting with the magnetic component of the incoming light. The frequency-dependent interaction sheds light on the material’s static (DC) response to an applied magnetic field through the use of the magnetic LST. Credit: Rindert et al.

Materials exhibit distinct interactions with electromagnetic fields, revealing their structural and intrinsic properties. The Lyddane-Sachs-Teller relation describes the correlation between a material's static and dynamic dielectric constantsparameters defining its response to external and absent electric fields—and the vibrational modes of its crystal lattice, characterized by resonance frequencies.

Origin of the Lyddane-Sachs-Teller Relation

Originally formulated by physicists Lyddane, Sachs, and Teller in 1941, this theoretical framework has become a cornerstone of solid-state physics and materials science. It has significantly contributed to understanding material properties, facilitating the development of advanced electronic devices.

Expanding the Lyddane-Sachs-Teller Relation into Magnetism

A research team at Lund University has expanded the Lyddane-Sachs-Teller relation into the domain of magnetism, revealing a fundamental connection between a material's static permeability—its steady-state response to magnetic fields—and its magnetic resonance frequencies. Their findings, published in Physical Review Letters, introduce new avenues for exploring magnetic materials.

Insight from Prof. Mathias Schubert

"My supervisor, Prof. Mathias Schubert, had previously investigated the interaction between electric fields and phonons, leading him to hypothesize a similar connection in the realm of magnetic fields and materials. This study was driven by that insight," said Viktor Rindert, the paper's first author, in an interview with publisher.

Developing the THz-EPR-GSE Technique for Measurement

Our development of terahertz ellipsometer, capable of detecting polarization response, provided the opportunity to explore this phenomenon. Using this advanced tool, we systematically tested the hypothesis, ultimately uncovering the Magnetic Lyddane-Sachs-Teller relation.

What is the Magnetic Lyddane-Sachs-Teller Relation?

The Magnetic Lyddane-Sachs-Teller relation, recently introduced by Rindert and his team, serves as a magnetic counterpart to the classical construct formulated by Lyddane, Sachs, and Teller. Rather than describing a material's response to an external electric field, it establishes a connection between its static (DC) and dynamic (AC) responses when subjected to magnetic fields.

Validation of the Magnetic Relation

"This relation establishes a direct link between a material's magnetic resonance frequencies and its static permeability," Rindert explained. "To validate this framwork, we employed our newly developed THz-EPR-GSE method to measure magnetic resonance frequencies and cross-referenced our findings with SQUID magnetometry, a widely recognized and highly precise technique."

Experimental Validation and Findings

Using THz-EPR-GSE to Measure Magnetic Resonance Frequencies

To validate this relation, the researchers employed a state-of-the-art optical techniqe developed in their laboratoryTHz-EPR-GSE—to measure the magnetic resonance frequencies of an iron-doped gallium nitride (GaN) semiconductor. Their findings provided conclusive evidence supporting the predicted Magnetic Lyddane-Sachs-Teller relation.

Exploring Magnetic Excitations and Semiconductor Materials

The relation discovered by Rindert and his team offers a powerful framework for exploring magnetic excitations in semiconductors and other magnetically active materials. Its implications could drive future innovations in electronic devices and their fundamental components.

Future Directions in Magneto-Optics

"Our research establishes a novel fundamental relation in magneto-optics, particularly benefiting those investigating antiferromagnetic and altermagnetic materials," Rindert noted. "While our long-term direction continues to develop, our current priority is leveraging the THz-GSE-EPR technique to explore paramagnetic point defects in ultrawide band gap semiconductors.

Significance for Power Electronics

This study holds significant relevance for power electronics, where these materials play a crucial role in improving both performance and efficiency.

Source


"Stay Ahead of Scientific Breakthrough!"

Discover how groundbreaking research is shaping the future of material science and magneto-optics. Explore our latest findings on the Magnetic Lyddane-Sachs-Teller relation and its potential impact on electronics and semiconductor technology.

Expand your knowledge with insights from other domains:

  • Human Health Issues — Stay updated on the latest medical advancements and health discoveries.
  • Earth Day Harsh Reality — Understand the pressing environmental challenges affecting our planet.
  • FSNews365 — Get the latest updates on science, technology, and global innovations.

Subscribe now and be part of the scientific revolution!

Labels: , , , , , ,

Friday, February 14, 2025

quantum time bidirectional study

Physicists Discover Dual Arrow of Time Emerging from the Quantum World

challenging the Conventional Understanding of Time

This schematic illustrates the concept of time-reversal transformation, where both the system and environment move in reverse temporal motion. Credit: Scientific Reports (2025). DOI: 10.1038/s41598-025-87323-x.

Researchers from the University of Surrey have challenged the conventional understanding of time, suggesting that at the quantum level, time may not be confined to a single direction but could potentially flow both forward and backward.

The Concept of Time's Unidirectional Flow

The concept of time's unidirectional flowfrom past to future—has long intrigued scientists. While our perception affirms this irreversibility, fundamental physical laws remain symmetric, allowing for the theoretical possibility of bidirectional time.

Everyday Examples of Time's Asymmetry

Dr. Andrea Rocco, Associate Professor in Physics and Mathematical Biology at the University of Surrey and lead author of the study, explained, "Consider spilled milk spreading across a table—its natural dispersion signals the forward passage of time. Watching this process in reverse, where the milk gathers itself back into the glass, appears unnatural, highlighting the intuitive asymmetry of time."

The Paradox of Time Reversibility in Physics

While many processes seem irreversible, other—like a pendulum's motion—look just as natural in reverse. This paradox arises because, at the most fundamental level, the laws of physics exhibit symmetry, making no distinction between forward and backward time flow.

The Illusion of Time's Asymmetry in Daily Life

"Our findings reveal that the asymmetry of time's passage in daily life is an illusion, as physics allows for motion in either direction."

Investigating Open Quantum Systems

The study, published in Scientific Report, explores how subatomic quantum systems interact with their surroundings, a phenomenon described as an 'open quantum system.'

Understanding Time's Unidirectional Flow

Scientists explored the underlying mechanisms behind our perception of time's unidirectional flow and whether this phenomenon originates from quantum mechanics.

The Study's Methodology and Key Assumptions

To streamline their analysis, the researchers adopted two fundamental assumptions: they isolated the quantum system from its expansive environment and considered the environment to be vast enough that dissipated energy and information would not return.

Investigating Time's Emergence at the Microscopic Scale

This methodology allowed researchers to investigate how the unidirectional flow time emerges, despite the theoretical possibility of bidirectional motion at the microscopic scale.

A Surprising Discovery—Time Reversal Symmetry in Open Quantum Systems

Despite these assumptions, the system exhibited identical behavior regardless of temporal direction. This finding mathematically reinforces time-reversal symmetry in open quantum system, implying that the perceived unidirectionality of time may be less rigid than traditionally assumed.

Mathematical Confirmation of Time-Reversal Symmetry

Thomas Guff, a postdoctoral researcher and lead investigator of the calculations, remarked, "What was truly unexpected was that, even after applying conventional simplifying assumptions to the equations governing open quantum system, their behavior remained unchanged regardless of whether the system evolved forward or backward in time."

The Role of the 'Memory Kernel' in Time Symmetry

Upon rigorous mathematical analysis, we determined that this behavior was inevitable, as a crucial component of the equation—the 'Memory Kernel'—exhibits inherent temporal symmetry.

The Unexpected Discovery of a Temporal Mechanism

"We identified a small but crucial element frequently disregarded—a discontinuous temporal component that ensures the retention of time symmetry. The presence of such a mechanism in a physical equations is highly unusual, making its spontaneous emergence all the more surprising."

Implications for Quantum Mechanics and Cosmology

This study provides a novel outlook on one of physics' most enduring enigmas. A deeper comprehension of time's fundamental nature could significantly impact quantum mechanics, cosmology and other scientific domains.

Source


Is time truly one-directional or could quantum mechanics redefine our perception of reality? New research from the University of Surrey challenges conventional physics, revealing that time may flow both forward and backward at the quantum level.

Dive deeper into groundbreaking discoveries in science, technology and health at:

What do you think about time's dual nature? Share your thoughts in the comments & explore more!

Labels: , , , , ,

Sunday, December 22, 2024

scientists negative time quantum physics

Scientists Discover 'Negative Time' in Quantum Physics Experiments

Introduction to Negative Time in Quantum Mechanics

physicist Daniela Angulo in the physics lab at the University of Toronto.

Researchers have long observed that light can occasionally seem to exit a material prior to entering itphenomenon often attributed to wave distortion within matter.

The Groundbreaking Discovery at the University of Toronto

Researchers at the University of Toronto, leveraging groundbreaking quantum experiments, claim to have proven that "negative time" is not merely theoretical but a concrete, physical reality warranting deeper investigation.

Study Overview and Peer Review Status

The study, available on the preprint server arXiv, has garnered international attention and skepticism despite not yet undergoing peer-reviewed publication.

The Complexity of Quantum Mechanics

The researchers stress that these intriguing results underscore a peculiar aspect of quantum mechanics rather than a transformative change in our concept of time.

Remarks by Aephraim Steinberg

"This subject is incredibly complex, even for discussion among fellow physicists. Misunderstandings are frequent," remarked Aephraim Steinberg, an experimental quantum physics professor at the University of Toronto.

The Challenge of "Negative Time"

Although "negative time" may evoke images of science fiction, Steinberg supports its use, aiming to encourage deeper exploration of quantum physics' enigmas.

Laser Research and Light-Matter Interaction Studies

The team began their exploration of light-matter interactions years ago.

When photons pass through atoms, some are absorbed and subsequently re-emitted. This interaction temporarily elevates the atoms to a higher-energy "excited" state before they revert to their normal state.

Measuring Negative Time in Quantum Experiments

In a study led by Daniela Angulo, the team aimed to measure the duration atoms remained in their excited state. "The time turned out to be negative," explained Steinbergindicating a duration of less than zero.

Concept Illustration: The Tunnel Example

To illustrate this concept, consider cars entering a tunnel: before the experiment, physicists understood that while the average entry time for a thousand cars might be noon, the first few could exit slightly earlier, say 11:59 am. This outcome had previously been disregarded as insignificant.

What Angulo and her team demonstrated was similar to measuring carbon monoxide levels in the tunnel after the first few cars passed through, only to find the readings showing a negative value.

Relativity and the Preservation of Fundamental Laws

No Violation of Einstein's Theory of Special Relativity

The experiments, carried out in a cramped basement lab filled with wires and aluminum-clad devices, required more than two years to fine-tune. The lasers needed precise calibration to prevent any distortion in the results.

However, Steinberg and Angulo are quick to emphasize that time travel is not being suggested. "We're not claiming anything traveled backward in time." Steinberg clarified. "That's a misunderstanding."

Quantum Mechanics: Probabilistic Behavior of Photons

The explanation stems from quantum mechanics, where particles like photons behave in probabilistic and uncertain manners rather than following deterministic laws.

Interaction Duration in Quantum Mechanics

Rather than following a predetermined timeline for absorption and re-emission, these interactions unfold over a range of possible duration's, some of which challenge everyday intuition.

Einstein's Special Relativity and the Speed of Light

The researchers emphasize that, crucially, this does not contradict Einstein's theory of special relativity, which asserts that no object can travel faster than light. These  photons carried no information, thus avoiding any cosmic speed constraints.

A Divisive Discovery: The Reception of "Negative Time"

The concept of "negative time" has attracted both excitement and skepticism, particularly from influential members of the scientific community.

Criticism from Theoretical Physicists

German theoretical physicist Sabine Hossenfelder, for example, challenged the findings in a YouTube video watched by over 250,000 viewers, stating. "The negative time in this experiments is unrelated to the concept of timeit merely describes how photons move through a medium and how their phases change."

Response from the University of Toronto Researchers

Angulo and Steinberg countered, asserting that their research fills essential gaps in understanding why light doesn't consistently travel at a constant speed.

Emphasizing the Validity of Experimental Findings

Steinberg recognized the controversy sparked by their paper's provocative headline, but emphasized that no credible scientist has disputed the experimental findings.

Future Directions and Applications of the Research

Focus on New Possibilities for Quantum Phenomena Exploration

"We've selected what we believe is the most productive way to present our findings," he said, noting that although practical applications are yet to be realized, the results open up new possibilities for investigating quantum phenomena.

The Path Ahead in Quantum Research

"Honestly, we haven't yet identified a direct path from our work to potential applications," he acknowledged. "We'll keep exploring, but I don't want to create unrealistic expectations."

Source


"Curious to learn more about how quantum mechanics is reshaping our understanding of time and light? Stay updated with our latest research findings by subscribing to our newsletter."

Labels: , , , , ,