Skip to main content

gravity from entropy quantum gravity

Gravity from Entropy: A Bold New Theory Bridging Quantum Mechanics and General Relativity

Introduction

A graphical illustration of the entropic quantum gravity action, where gravity is described by the quantum relative entropy between the manifold's metric and that induced by the matter field and geometry. Source: Physical Review D (2025), DOI: 10.1103/PhysRevD.111.066001.

Professor Ginestra Bianconi, an applied mathematics expert at Queen Mary University of London, presents a pioneering framework in Physical Review D that could redefine the link between gravity and quantum mechanics.

The Study Overview: Gravity from Quantum Relative Entropy

The study, Gravity from Entropy, presents and innovative framework that derives gravity from quantum relative entropy, offering a potential bridge between quantum mechanics and Einstein's general relativitytwo historically conflicting theories.

Challenges in Unifying Quantum Gravity

The Struggle to Integrate Quantum Mechanics and General Relativity

Physicists have long grappled with the challenge of unifying quantum mechanics and general relativity—two foundational but seemingly incompatible theories. While quantum mechanics dictates particle behavior at microscopic scales, general relativity governs gravitational forces on a cosmic level. Bridging this theoretical divide remains one of the greatest challenges in modern physics.

Professor Bianconi's Groundbreaking Framework

Reinterpreting the Spacetime Metric as a Quantum Operator

Professor Bianconi's research introduces a novel framework in which the spacetime metric—central to general relativity—is reinterpreted as a quantum operator. By leveraging quantum relative entropy, a principle from quantum information theory, this approach provides new insights into the relationship between spacetime geometry and matter.

The Role of Entropy and the G-field

Entropic Action and Deviations in Spacetime Metrics

The research presents an entropic action framework that measures the deviation between spacetime metrics and those influenced by matter fields.

Modifying Einstein's Equations and Predicting a Cosmological Constant

This framework modifies Einstein's equations, which, under low coupling conditions—characterized by low energy and minimal curvature—converge to classical general relativity. Crucially, it also predicts a small, positive cosmological constant, aligning more accurately with observed cosmic acceleration than alternative theories.

The G-field and its Role in Gravity and Dark Matter

This theory introduces the G-field, an auxiliary field serving as a Lagrangian multiplier. It not only refines the structure of modified gravitational equations but also provides a new theoretical avenue for understanding dark matter, whose elusive nature remains one of modern physics' greatest challenges.

Wider Implications and Future Directions

Quantum Gravity and the Unification of Theoretical Physics

This research carries significant implications, offering a novel connection between gravity and quantum information theory. It paves the way for a potential unification of quantum gravity while also providing fresh perspectives on the elusive nature of dark matter.

The Emergent Cosmological Constant and Expanding Our Understanding of the Universe

"Our research suggests that quantum gravity originates from entropic principles, with the G-field potentially serving as a candidate for dark matter," states Professor Bianconi. "Furthermore, our model's emergent cosmological constant may bridge the gap between theoretical predictions and observed cosmic expansion."

The Future of This Theory and Its Potential Impact

While further investigation is necessary to comprehensively assess this theory's implications, the study constitutes a pivotal stride toward deciphering the fundamental nature of the cosmos.

Disrupting Traditional Paradigms in Physics

Professor Bianconi's research disrupts traditional paradigms, introducing novel avenues for inquiry. By conceptualizing spacetime as a quantum entity and harnessing entropy within spacetime metrics, this work offers profound insights into gravity, quantum mechanics, and the cosmos.

Source


Ready to dive deeper into the universe of quantum gravity?

Explore our groundbreaking article on Gravity from Entropy and discover how quantum relative entropy is reshaping our understanding of gravity and dark matter. For more fascinating insights on related topics, visit these trusted sources:

  • Human Health Issues: Stay updated with the latest insights on human health challenges influenced by cutting-edge research.
  • FSNews365: Get real-time updates and in-depth analysis on breakthrough scientific discoveries.
  • Earth Day Harsh Reality: Uncover raw perspectives on environmental challenges and the impact of scientific progress.

Subscribe now and join our community in exploring the frontiers of science!

Comments

Popular posts from this blog

NASA chile scientists comet 3i atlas nickel mystery

NASA and Chilean Scientists Study 3I/ATLAS, A Comet That Breaks the Rules Interstellar visitors are rare guests in our Solar System , but when they appear they often rewrite the rules of astronomy. Such is the case with 3I/ATLAS , a fast-moving object that has left scientists puzzled with its bizarre behaviour. Recent findings from NASA and Chilean researchers reveal that this comet-like body is expelling an unusual plume of nickel — without the iron that typically accompanies it. The discovery challenges conventional wisdom about how comets form and evolve, sparking both excitement and controversy across the scientific community. A Cosmic Outsider: What Is 3I/ATLAS? The object 3I/ATLAS —the third known interstellar traveler after "Oumuamua (2017) and 2I/Borisov (2019) —was first detected in July 2025 by the ATLAS telescope network , which scans he skies for potentially hazardous objects. Earlier images from Chile's Vera C. Rubin Observatory had unknowingly captured it, but ...

bermuda triangle rogue waves mystery solved

Bermuda Triangle Mystery: Scientist Claims Rogue Waves May Explain Vanishing Ships and Aircraft for decades, the Bermuda Triangle has captured the world's imagination, often described as a supernatural hotspot where ships vanish and aircraft disappear without a trace. From ghostly ships adrift to unexplained plane crashes, this stretch of ocean between Bermuda, Puerto Rico and Florida remains one of the most infamous maritime mysteries. But now, Dr. Simon Boxall, an oceanographer at the University of Southampton , suggests the answer may not be extraterrestrial at all. Instead, he argues that the truth lies in rogue waves — giant, unpredictable surges of water capable of swallowing even the largest ships within minutes. The Bermuda Triangle: A Legacy of Fear and Fascination The Bermuda Triangle has inspired decades of speculation , with theories ranging from UFO abductions to interdimensional rifts. Popular culture, documentaries and countless books have kept the legend alive, of...

nist breakthrough particle number concentration formula

NIST Researchers Introduce Breakthrough Formula for Particle Number Concentration Understanding the number of particles in a sample is a fundamental task across multiple scientific fields — from nanotechnology to food science. Scientists use a measure called Particle Number Concentration (PNC) to determine how many particles exist in a given volume, much like counting marbles in a jar. Recently, researchers at the National Institute of Standards and Technology (NIST) have developed a novel formula that calculates particle concentrations with unprecedented accuracy. Their work, published in Analytical Chemistry , could significantly improve precision in drug delivery, nanoplastic assessment and monitoring food additives. Related reading on Nanotechnology advancements: AI systems for real-time flood detection . What is Particle Number Concentration (PNC)? Defining PNC Particle Number Concentration indicates the total count of particles within a specific volume of gas or liquid,...