Tuesday, March 11, 2025

mysterious galactic core dark matter discovery

Mysterious Galactic Core Energy May Reveal a New Type of Dark Matter

Introduction

An artistic depiction of dark matter particles colliding and producing charged particles in the Milky Way’s central region.

The enigmatic event at the center of our galaxy could potentially be caused by an alternative type of dark matter.

Dark matter, an elusive and unobservable substance potentially constituting 85% of the universe's mass, remains one of the most profound scientific pursuits.

New Findings on Dark Matter in the Milky Way

Pioneering research brings scientists a step closer to deciphering the enigma of dark matter, suggesting a novel candidate may drive unexplained chemical reactions in the Milky Way.

A Mystery in the Galactic Core: Positively Charged Hydrogen

Dr. Shyam Balaji, a Postdoctoral Research Fellow at King's College London and a lead author of the study, states: "At the heart of our galaxy lie vast clouds of positively charged hydrogenan enduring mystery for decades, as hydrogen gas is typically neutral. What mechanism provides the energy necessary to dislodge electrons and create this ionization?"

The energy emission detected in this region of our galaxy indicate a persistent and dynamic energy source.

Could Dark Matter Be Lighter Than Previously Theorized?

Our data suggests that this phenomenon could be driven by a much lighter form of dark matter than currently theorized.

Challenges to the WIMP Model

The leading hypothesis for dark matter suggests it comprises Weakly Interacting Massive Particles (WIMPs), a class of particles that barely interact with ordinary matter, rendering them incredibly elusive.

Today's publication in Physical Review Letters suggests a paradigm shift, bringing renewed focus to a low-mass dark matter candidate that challenges the WIMP-dominated narrative.

A New Explanation: Low-Mass Dark Matter Collisions

According to the study, these lightweight dark matter particles may collide and annihilate, leading to the formation of charged particles capable of ionizing hydrogen gas.

Could Cosmic Rays or WIMPs Explain This Phenomenon?

Earlier explanations for this ionization process centered on cosmic rays—high-energy particles traversing the universe. However, observational data from the Central Molecular Zone (CMZ) suggest that the detected energy signatures are insufficient to be attributed to cosmic rays. Similarly, Weakly Interacting Massive Particles (WIMPs) do not appear capable of driving this phenomenon.

A Slower, Low-Mass Energy Source

The researchers concluded that the energy source driving the annihilation process must be:

  • Slower than cosmic rays
  • Possess a lower mass than WIMPs

A New Approach to Studying Dark Matter

Dr. Balaji stated, "The quest to uncover dark matter is one of the greatest pursuits in modern science, yet most experiments are conducted on Earth. By analyzing gas within the CMZ through a novel observational approach, we can directly investigate its origins. The data suggests that dark matter may be significantly lighter than previously assumed."

Implications for Galactic Phenomena

Unraveling the mystery of dark matter is a cornerstone of fundamental physics, yet most experiments remain Earth-bound, passively awaiting its detection. By examining the hydrogen gas at the heart of our Milky Way, the CMZ offers promising insights that may bring us closer to uncovering dark matter's true nature.

The 511-keV Emission Line and Dark Matter

This discovery could provide a unified explanation for broader galactic phenomena, including:

  • The enigmatic 511-keV emission line observed at the Milky Way's core
  • A distinctive X-ray signature that may also originate from low-mass dark matter interactions producing charged particles.

Source

Want to stay updated on groundbreaking discoveries in science and technology? Explore more insights into the universe's mysteries and the latest in scientific breakthroughs on dark matter by visiting our related content:

  • Human Health Issues: Stay informed about the latest developments in health science and how the impact humanity.
  • FSNews365: Dive into the latest in technology, sustainability, research and global innovations that shape our world.
  • Earth Day Harsh Reality: Learn about the pressing environmental challenges we face and the solutions we can adopt for a healthier planet.

Stay engaged with cutting-edge research that can reshape our understanding of dark matter and the universe!

Labels: , , , , , , ,

Saturday, December 7, 2024

decade neutrino research cosmic mysteries

Unlocking the Universe: Physicists Plan a Decade of Neutrino Research to Solve Cosmic Mysteries

An underground neutrino detector used in DUNE experiment for cosmic research.

Introduction to Neutrino Research

Physicists are on the brink of uncovering answers to fundamental cosmic mysteries by delving deeper into the properties of subatomic particles.

Professor Alexandre Sousa of the University of Cincinnati has published a paper forecasting global neutrino research developments for the next decade.

The Importance of Neutrinos in Physics

What Are Neutrinos?

Neutrinos, the universe's most plentiful massive particles, have become a key focus for scientists seeking deeper insights into their properties.

Origins and Behavior of Neutrinos

Neutrinos are produced during nuclear fusion in the sun, radioactive decay in reactors or Earth's crust, and particle accelerator experiments. They oscillate among three distinct flavors as they travel.

The Quest for a Fourth Neutrino: The Sterile Neutrino

The Hypothesis of the Sterile Neutrino

However, unexpected experimental findings led physicists to hypothesize the existence of a fourth neutrino type, termed the sterile neutrino, which is unaffected by three of the four fundamental forces.

  • "In theory, it interacts only with gravity, remaining unaffected by the weak nuclear force, strong nuclear force, or electromagnetic force," Sousa explained.

The Collaborative Effort: Snowmass 2021/2022

An Overview of the White Paper

Sousa and his collaborators address perplexing experimental anomalies in neutrino research in a white paper recently published in Journal of Physics G: Nuclear and Particle Physics. This work stems from the Particle Physics Community Planning Exercise, known as "Snowmass 2021/2022."

The Role of High-Energy Physics Experts

Every decade, experts in high-energy physics convene to shape the direction of particle physics in the U.S. and with global collaborators.

The Team Behind the Research

The paper also included contributions from UC Professor Jure Zupan, Associate Professor Adam Aurisano, visiting scholar Tarak Thakore, postdoctoral fellow Michael Wallbank, and physics students Herilala Razafinime and Miriama Rajaoalisoa.

Progress and Challenges in Neutrino Physics

Key Areas of Focus

According to Zupan, progress in the field of neutrino physics is expected to occur on various fronts.

In addition to the search for sterile neutrinos, Zupan mentioned that physicists are investigating various experimental anomaliesdiscrepancies between data and theoretical predictionsthat will soon be tested with upcoming experiments.

The Nobel Prize and Its Implications

Gaining deeper insights into neutrinos could revolutionize our long-held views on physics. Neutrino research has already earned the highest scientific accolade, the Nobel Prize, with the discovery of neutrino oscillations awarded in 2015. Nations, including the United States, are committing billions of dollars to these initiatives due to their profound scientific significance.

Why Neutrinos Matter: Addressing Cosmic Questions

The Matter-Antimatter Dilemma

A key question in physics is why the universe contains more matter than antimatter, despite the Big Bang theoretically producing both in equal amounts. According to Sousa, neutrino research may hold the answer.

  • "While it may not impact your daily life, our goal is to understand the reason for our existence," Sousa said. "Neutrinos ap pear to be central to addressing these profound questions."

Major Neutrino Research Initiatives

The Deep Underground Neutrino Experiment (DUNE)

Sousa is involved in one of the most significant neutrino research initiatives, the Deep Underground Neutrino Experiment (DUNE), managed by the Fermi National Accelerator Laboratory. The project involves excavating the former Homestake gold mine to a depth of 5,000 feet to house neutrino detectors. Sousa noted that the elevator ride alone takes approximately 10 minutes to reach the detector chambers.

Researchers place detectors deep underground to protect them from cosmic rays and background radiation, which facilitates the isolation of particles created in experiments.

Project Overview

The experiment, scheduled to launch in 2029, will initially use two detector modules to measure atmospheric neutrinos. By 2031, Fermilab researchers will direct a high-energy neutrino beam 800 miles through Earth to the detector in South Dakota, as well as one in Illinois. the initiative involves over 1,400 international engineers, physicists, and scientists.

Technical and Scientific Goals

Sousa remarked that with these two detector modules and the most powerful neutrino beam to date, significant advancements are possible. The launch of DUNE is anticipated to be highly exciting and will be the most sophisticated neutrino experiment ever conducted.

The paper was a substantial effort, involving over 170 contributors from 118 universities and institutes, supported by 14 editors, including Sousa.

  • "The project was a prime example of teamwork involving scientists from varied backgrounds. Although not always straightforward, seeing is truly gratifying," he commented.

NOvA Experiment

At the same time, Sousa and UC's Aurisano are participating in another Fermilab neutrino experiment known as NOvA, which explores the mechanisms behind neutrino flavor changes. In June, their research team shared their accurate neutrino mass measurements to date.

Hyper-Kamiokande (Hyper-K)

Hyper-Kamiokande, or Hyper-K, is another significant neutrino observatory and experiment currently being built in Japan, with operations potentially starting by 2027. It, too, seeks evidence of sterile neutrinos and explores other research questions.

Future Outlook and Collaborative Efforts

A Decade of Research and Global Participation

According to Sousa, "The combination of these findings, particularly when considered alongside DUNE, will yield highly significant results. Together, these experiments will greatly enhance our understanding. We expect to have some answers by the 2030s."

The Potential of Neutrino Physics

Zupan from UC stated that these multibillion-dollar initiatives have the potential to provide answers to fundamental questions regarding matter, antimatter, and the universe's origins.

Zupan explained that, so far, the only parameter in particle physics that has been found to have a nonzero value is connected to quark properties. The possibility of a comparable property for neutrinos is still an open and fascinating question.

The Road Ahead

Sousa mentioned that researchers globally are engaged in numerous neutrino experiments that could yield answers or spark new questions.

Source


"Stay informed on groundbreaking neutrino discoveries by subscribing to our updates or exploring related articles on our site."

Labels: , , , , , , , ,

Saturday, November 23, 2024

supernova dark matter axion gamma ray detection

Could a Nearby Supernova Hold the Key to Solving the Dark Matter Mystery?

The Mystery of Dark Matter

The quest to uncover the universe's dark matter could reach its conclusion as early as tomorrowif a nearby supernova offers the right conditions. For 90 years, astronomers have been puzzled by the elusive nature of dark matter, which constitutes 85% of the universe's mass yet remains invisible to telescopes. Current research focuses on the axion, a lightweight particle widely regarded as the leading candidate.

The Role of Axions in Dark Matter Research

Identifying Axions Through Supernova Gamma Rays

Researchers at the University of California, Berkeley, propose that axions could be identified almost instantly following the detection of gamma rays from a nearby supernova. If axions exist, they would be generated in vast numbers during the first 10 seconds of a massive star's collapse into a neutron star. These particles would then escape and convert into high-energy gamma rays within the star's powerful magnetic field.

The Challenge of Detecting Gamma Rays

At present, such a detection can occur only if the Fermi Gamma-ray Space Telescope, the only operational gamma-ray telescope in orbit, is oriented toward the supernova at the moment of its explosion. With the telescope's restricted field of view, the probability of this alignment is approximately 10%.

Implications of Gamma-Ray Detection

Determining the Mass of the QCD Axion

A single gamma-ray detection could precisely determine the mass of the axion, specifically the QCD axion, across a vast range of theoretical possibilities, including those under investigation in Earth-based experiments. Conversely, the absence of such a detection would rule out a significant portion of potential mass ranges, rendering many current dark matter searches obsolete.

The Need for a Nearby Supernova

The challenge lies in the fact that gamma rays must be sufficiently bright to detect, which requires the supernova to occur nearbywithin the Milky Way or its satellite galaxies. However, such events are rare, with nearby stars exploding only every few decades. The most recent occurrence was in 1987, when a supernova erupted in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Although the Solar Maximum Mission gamma-ray telescope was directed toward this supernova, its sensitivity was insufficient to detect the predicted gamma-ray intensity, as analyzed by the UC Berkeley team.

"A modern gamma-ray telescope observing a supernova like 1987A could confirm or eliminate the existence of the QCD axion—a fascinating theoretical particle—over a vast range of parameter space," said Benjamin Safdi, UC Berkeley associate professor of physics and senior author of a paper published on November 19 in Physical Review Letters. "This includes nearly all parameter regions unreachable by laboratory methods and a considerable portion that laboratories are currently investigating, and it would happen within 10 seconds."

The Proposed GALAXIS Satellite Network

The Urgency of Detecting Axions

The researchers express concern that when the long-anticipated supernova occurs in the nearby universe, the opportunity to observe gamma rays produced by axions might be missed. To address this, they are collaborating with colleagues involved in gamma-ray telescope development to explore the possibility of deploying a fleet of satellites capable of monitoring the entire sky continuously. They have even proposed a name for this ambitious constellation of full-sky gamma-ray satellites: the GALactic Axion Instrument for Supernova, or GALAXIS.

The Risks of Missing the Opportunity

"We're all deeply concerned about the possibility of the next supernova occurring before the necessary instruments are in place," said Safdi. "Missing the chance to detect axions due to a supernova happening tomorrow would be a profound losssuch an opportunity may not arise again for another 50 years."

Safdi's co-researchers are graduate student Yujin Park and postdoctoral scholars Claudio Andrea Manzari and Inbar Savoray. Together, they are part of UC Berkeley's physics department and the Theoretical Physics Grou p at Lawrence Berkeley National Laboratory.

Understanding the QCD Axion

Dark Matter and the Search for Axions

Dark matter searches began by focusing on faint, massive compact halo object (MACHOs), which were expected to be spread throughout our galaxy and beyond. When MACHOs couldn't be detected, attention turned to theoretical elementary particles that should be ubiquitous and detectable in lab experiments on Earth. Yet, the hunt for weakly interacting massive particles (WIMPs) also yielded no results.

Axions and Their Role in Physics

The axion is currently the leading candidate for dark matter, a particle that seamlessly integrates into the standard model of physics while addressing several unresolved issues in particle physics.

Additionally, axions arise naturally from string theory, a theoretical framework for the universe's fundamental geometry, and could potentially reconcile gravity, which governs large-scale interactions, with quantum mechanics, which governs the microscopic.

According to Safdi, it appears nearly impossible to formulate a consistent theory that integrates gravity with quantum mechanics without including particles such as the axion.

The leading candidate for an axion, known as the QCD axionso named after the prevailing theory of the strong face, quantum chromodynamics—hypothetically interacts with all forms of matter, albeit weakly, through the four fundamental forces: gravity, electromagnetism, the strong force (which binds atoms), and the weak force (which governs atomic decay).

One consequence is that in a powerful magnetic field, an axion should occasionally transform into an electromagnetic wave, or photon. This contrasts with the neutrino, a similarly lightweight, weakly-interacting particle, which only engages with gravity and the weak force, entirely disregarding the electromagnetic force.

Experimental Efforts and Simulations

Axion Detection in Laboratory Experiments

Experiments in laboratory settings, such as the ALPHA Consortium (Axion Longitudinal Plasma HAloscope), DMradion, and ABRACADABRA, all involving UC Berkeley researchers, utilize compact cavities that resonate like a tuning fork, enhancing the faint electromagnetic field or photon produced when a low-mass axion undergoes transformation in the presence of a strong magnetic field.

Supercomputer Simulations and Neutron Stars

Rather than focusing on distant galactic magnetic fields, the researchers investigated the generation of gamma rays by axions within the strong magnetic fields surrounding the star that produced them. Supercomputer simulations revealed that this process efficiently generates a burst of gamma rays, with intensity linked to the mass of the axion.

Neutron Stars as Axion Laboratories

The Role of Neutron Stars and Magnetars

Gamma ray burst should coincide with a burst of neutrinos from within the neutron star. However, this axion burst only lasts for 10 seconds following the formation of the neutron star, after which the production rate rapidly decreases, hours before the outer layers of the star begin to explode.

"This has prompted us to consider neutron stars as ideal locations for axion searches, effectively turning them into 'axion laboratories,'" Safdi explained. "Neutron stars offer many advantages. Not only are they incredibly hot, but they also possess some of the strongest magnetic fields in the universe. Magnetars, a type of neutron star, for instance, generate magnetic fields that are tens of billions of times stronger than anything we can produce in a laboratory. These intense magnetic fields help convert axions into detectable signals."

Setting Limits on Axion Mass

Two years ago, Safdi and his team established the most precise upper limit on the mass of the QCD axion, pegging it at roughly 16 million electron volts, which is about 32 times smaller than the electron's mass. This conclusion was drawn from analyzing the cooling rate of neutron stars, which would accelerate if axions were produced alongside neutrinos within these dense celestial objects.

The Future of Axion Research

Predictions and Opportunities for Gamma-Ray Detection

In their latest publication, the UC Berkeley team details the generation of gamma rays following a core collapse into a neutron star. Additionally, they utilize the lack of gamma ray detection from the 1987A supernova to set the most stringent constraints on the mass of axion-like particles, which differ from QCD axions in their lack of interaction with the strong force.

The researchers predict that detecting gamma rays enable them to determine the mass of the QCD axion, provided it exceeds 50 microelectron volts (μeV), roughly one 10-billionth of the electron's mass. A single observation could redirect ongoing experiments to verify the axion's mass, according to Safdi. Although a network of dedicated gamma-ray telescopes is the optimal solution for detecting gamma rays from a nearby supernova, a fortunate event with Fermi would be an even more advantageous scenario.

The Role of Fermi in Axion Research

The optimal scenario for detecting axions would be for Fermi to capture a supernova. However, Safdi notes that the probability of this hap pening is low. "But if Fermi were to observe it, we would be able to measure the axion's mass and interaction strength, providing us with the critical information about the axion. The signal would be highly reliable, as no ordinary matter could produce such an event," he said.

Source


Stay Updated on Dark Matter Discoveries

Join our newsletter to get the latest updates on breakthroughs in dark matter research and axion detection.

Labels: , , , , , , , ,