Tuesday, March 11, 2025

mysterious galactic core dark matter discovery

Mysterious Galactic Core Energy May Reveal a New Type of Dark Matter

Introduction

An artistic depiction of dark matter particles colliding and producing charged particles in the Milky Way’s central region.

The enigmatic event at the center of our galaxy could potentially be caused by an alternative type of dark matter.

Dark matter, an elusive and unobservable substance potentially constituting 85% of the universe's mass, remains one of the most profound scientific pursuits.

New Findings on Dark Matter in the Milky Way

Pioneering research brings scientists a step closer to deciphering the enigma of dark matter, suggesting a novel candidate may drive unexplained chemical reactions in the Milky Way.

A Mystery in the Galactic Core: Positively Charged Hydrogen

Dr. Shyam Balaji, a Postdoctoral Research Fellow at King's College London and a lead author of the study, states: "At the heart of our galaxy lie vast clouds of positively charged hydrogenan enduring mystery for decades, as hydrogen gas is typically neutral. What mechanism provides the energy necessary to dislodge electrons and create this ionization?"

The energy emission detected in this region of our galaxy indicate a persistent and dynamic energy source.

Could Dark Matter Be Lighter Than Previously Theorized?

Our data suggests that this phenomenon could be driven by a much lighter form of dark matter than currently theorized.

Challenges to the WIMP Model

The leading hypothesis for dark matter suggests it comprises Weakly Interacting Massive Particles (WIMPs), a class of particles that barely interact with ordinary matter, rendering them incredibly elusive.

Today's publication in Physical Review Letters suggests a paradigm shift, bringing renewed focus to a low-mass dark matter candidate that challenges the WIMP-dominated narrative.

A New Explanation: Low-Mass Dark Matter Collisions

According to the study, these lightweight dark matter particles may collide and annihilate, leading to the formation of charged particles capable of ionizing hydrogen gas.

Could Cosmic Rays or WIMPs Explain This Phenomenon?

Earlier explanations for this ionization process centered on cosmic rays—high-energy particles traversing the universe. However, observational data from the Central Molecular Zone (CMZ) suggest that the detected energy signatures are insufficient to be attributed to cosmic rays. Similarly, Weakly Interacting Massive Particles (WIMPs) do not appear capable of driving this phenomenon.

A Slower, Low-Mass Energy Source

The researchers concluded that the energy source driving the annihilation process must be:

  • Slower than cosmic rays
  • Possess a lower mass than WIMPs

A New Approach to Studying Dark Matter

Dr. Balaji stated, "The quest to uncover dark matter is one of the greatest pursuits in modern science, yet most experiments are conducted on Earth. By analyzing gas within the CMZ through a novel observational approach, we can directly investigate its origins. The data suggests that dark matter may be significantly lighter than previously assumed."

Implications for Galactic Phenomena

Unraveling the mystery of dark matter is a cornerstone of fundamental physics, yet most experiments remain Earth-bound, passively awaiting its detection. By examining the hydrogen gas at the heart of our Milky Way, the CMZ offers promising insights that may bring us closer to uncovering dark matter's true nature.

The 511-keV Emission Line and Dark Matter

This discovery could provide a unified explanation for broader galactic phenomena, including:

  • The enigmatic 511-keV emission line observed at the Milky Way's core
  • A distinctive X-ray signature that may also originate from low-mass dark matter interactions producing charged particles.

Source

Want to stay updated on groundbreaking discoveries in science and technology? Explore more insights into the universe's mysteries and the latest in scientific breakthroughs on dark matter by visiting our related content:

  • Human Health Issues: Stay informed about the latest developments in health science and how the impact humanity.
  • FSNews365: Dive into the latest in technology, sustainability, research and global innovations that shape our world.
  • Earth Day Harsh Reality: Learn about the pressing environmental challenges we face and the solutions we can adopt for a healthier planet.

Stay engaged with cutting-edge research that can reshape our understanding of dark matter and the universe!

Labels: , , , , , , ,

Thursday, December 26, 2024

quantum entanglement faster than light communication

Faster Than Light? Investigating Communication Between Entangled Particles

Introduction to Quantum Entanglement

Diagram illustrating the concept of quantum entanglement where particles communicate instantaneously across vast distances, challenging light speed limits.

Entanglement in quantum mechanics is often regarded as one of its most perplexing phenomena. At first glance, it seems to allow particles to interact over great distances instantaneously, seemingly defying the speed of light. However, although entangled particles are linked, they do not inherently exchange information with each other.

The Nature of Particles in Quantum Mechanics

Particles as Probabilistic States

In quantum mechanics, the concept of a particle is quite different from what we intuitively understand. Rather than being a fixed, solid object, a particle is more accurately described as a cloud of probabilistic states, outlining where we may observe it when measured. Until we perform an observation, however, we cannot precisely determine all its characteristics.

Quantum States and Their Indeterminate Probabilities

Quantum states represent these indeterminate probabilities. In certain scenarios, two particles can be connected through quantum mechanics, where a unified mathematical expression accounts for the probabilities of both particles at the same time, a condition known as entanglement.

Understanding Quantum Entanglement

Instantaneous Communication Between Entangled Particles

When particles are in an entangled quantum state, measuring the properties of one particle immediately reveals the state of the other. Take quantum spin as an example:a property of subatomic particles like electrons, where the spin can be either up or down. Upon entangling two electrons, their spins become correlated, and we can configure the entanglement so that their spins are always opposite.

If video not open click on link: What is Quantum Theory?

The Role of Measurement in Determining Spin

If we measure the spin of the first particle and find it pointing up, this gives us immediate knowledge about the second particle. Given that the quantum state of the two particles was carefully entangled, we can be certain that the second particle's spin must be pointing down. As soon as one particle's state is revealed, the state of the other is simultaneously determined.

The Mystery of Communication Beyond Light Speed

Can Communication Happen Faster Than Light?

What if the second particle were located on the opposite side of the room, or even across the galaxy? Quantum theory suggests that once the state of the first particle is determined, the second particle instantaneously "knows" its spin. This phenomenon implies the potential for communication that exceeds the speed of light.

The Paradox and Resolution of Faster-Than-Light Communication

The solution to this apparent paradox lies in examining the timing of events and, crucially, understanding who possesses knowledge at each moment.

Understanding the Flow of Information in Quantum Measurements

Who Knows What and When?

Suppose I am conducting the measurement of particle A, while you are handling particle B. Upon my measurement, i can determine with certainty the spin of your particle. However, you remain unaware of this until you perform your own measurement or I inform you. In both scenarios, no information travels faster than lighteither you measure locally or await my communication.

No Instant Knowledge: The Limit of Quantum Communication

Although the two particles are interconnected, no one gains prior knowledge. I can determine the behavior of your particle, but i can only communicate this information at a speed slower than lightor you must make your own discovery.

Conclusion: The Speed of Entanglement vs. The Speed of Information

While entanglement occurs instantly, the process of revealing its effects is not immediate. We must rely on tradition, sub-light-speed communication to fully understand the correlations dictated by quantum entanglement.

Source


"Quantum entanglement may defy our classical understanding of physics, but it's only the beginning of what quantum mechanics can reveal. If you're fascinated by how science is pushing the boundaries of knowledge, explore more thought-provoking articles that delve into the most intriguing aspects of quantum and beyond.

Dive Deeper into the fascinating world of science, technology, and the future. Click on the links to explore more!"

Labels: , , , , , , ,

Friday, December 20, 2024

atlas records precise bᴼ meson lifetime lhc

Pioneering Precision: Scientists Record Electrically Neutral Beauty Meson Lifetime

New High-Precision Measurement of Bᴼ Meson Lifetime by ATLAS Collaboration

Visualization of the Bᴼ meson decay into neutral kaon and J/ψ meson at the ATLAS detector, LHC experiment

Researchers from the ATLAS collaboration at the Large Hadron Collider (LHC) have unveiled a new high-precision measurement of the electrically neutral beauty (B) meson's lifetime, a hadron made up of a bottom antiquark and a down quark.

Understanding Beauty Mesons and Their Significance

Beauty (B) mesons consist of two qarks, including a bottom quark. For decades, their study has allowed physicists to probe rare, well-predicted phenomena, offering insights into weak force-mediated interactions and the dynamics of heavy-quark bound states. Accurate determination of the B meson lifetime, the interval before its decay, remains crucial in this research domain.

ATLAS Collaboration's Latest Study on B Meson Decay

The ATLAS collaboration's latest study on the B meson focuses on its decay into an excited neutral kaon (K ͯ ᴼ) and a J/ψ meson. The J/ψ meson subsequently decays into two muons, while the k K ͯ ᴼ meson is analyzed through its decay into a charged pion and a charged kaon. This analysis leverages a substantial data set of 140 inverse femtobarns collected from proton-proton collisions during LHC Run 2 (2015-2018).

Measurement of B Meson Lifetime

The ATLAS team reported a measurement of the B meson lifetime at 1.5053 picoseconds (1 ps = 10⁻¹² seconds), with statistical and systematic uncertainties of 0.0012 ps and 0.0035 ps, respectively. This is the most precise determination to date, marking a significant enhancement over previous results, including prior ATLAS findings.

Overcoming Experimental Challenges

To achieve these precise measurements, researchers had to surmount various experimental challenges, such as systematic uncertainty minimization, advanced modeling, and refined detector alignment.

Decay Width Measurement and Its Implications

Beyond measuring the B meson lifetime, the ATLAS team also determined its decay width, a fundamental property of unstable with finite lifetime. According to Heisenberg's uncertainty principle, shorter lifetime correspond to broader decay widths. The B meson's decay width was measured as 0.664 inverse picoseconds (ps⁻¹), with a total uncertainty of 0.004 ps⁻¹.

Comparison with Bs Meson Decay Width

The researchers subsequently compared their result with an earlier measurement of the decay width of the Bs meson, which consists of a bottom quark and a strange quark. The ratio of the decay widths was found to be consistent with unity, indicating similar values for both measurements. These findings align with the predictions of the heavy-quark model and provide valuable data for refining these predictions.

Impact on Our Understanding of Weak-Force-Mediated Decays

The latest ATLAS precision measurements significantly deepen our understanding of weak-force-mediated decays within the Standard Model and offer crucial data for advancing future theoretical research.

Source


"Stay up to date with the latest breakthroughs in particle physics by subscribing to our newsletter for more ATLAS collaboration updates and LHC discoveries."

Labels: , , , , , ,

Friday, December 13, 2024

first-search-sueps-13-tev-cms-collider

Soft Unclustered Energy at 13 TeV: A First Search in Proton-Proton Collisions

Introduction to Hidden Valley Models and SUEPs

Researchers from the CMS experiment searching for soft unclustered energy patterns (SUEPs) in proton–proton collisions at CERN.

Many physics studies aim to experimentally uncover exotic phenomena extending beyond the Standard Model (SM), as outlined by theoretical frameworks. Among these are hidden valley models, which propose a dark sector where particles interact via a strong, dark force. These models predict particles and interactions with unique decay characteristics.

CMS Collaboration's Groundbreaking Search for SUEPs

In a recent publication in Physical Review Letters, researchers from the CMS (Compact Muon Solenoid) collaboration at CERN reported the results of the first search for soft unclustered energy patterns (SUEPs), a unique signal predicted by hidden valley models in high-energy particle collisions.

SUEPs and Their Role in Extending the Standard Model

"SUEPs belong to a broader class of theories aimed at extending the Standard Model to address unresolved phenomena in universe, such as dark matter and matter-antimatter asymmetry," said Luca Lavezzo of the CMS search team in an interview with Phys.

Theoretical Foundations of Hidden Valley Models

Specifically, these phenomena are among the predictions derived from hidden valley theories. Introduced nearly two decades ago by Matt Strassler and Kathryn Zurek, these theories propose a "Dark Sector" distinct from the Standard Model, characterized by its own strong, confining force, analogous to the Standard Model's strong force that binds quarks and gluons into hadrons such as protons and neutrons.

Challenges in Validating Hidden Valley Predictions

Many of the fascinating predictions made by hidden valley models have yet to undergo experimental validation. When these theories were first proposed, the technological limitations of the time rendered searches for the predicted dark sectors impractical, deferring such efforts to future studies.

Revisiting Hidden Valley Theories with Colliders

"Several years ago, as interest in investigating complex dark sectors grew within the scientific community, theorists and experimentalists revisited the unusual predictions of hidden valley theories, realizing that some could now be explored using colliders," said Lavezzo.

New Search Strategies for SUEPs and Other Phenomena

Soft unclustered energy patterns (SUEPs), semivisible jets, and emerging jets represent the initial set of searches aimed at validating specific predictions from hidden valley models, all published within the last few years.

Characterizing SUEPs in High-Energy Collisions

Hidden valley models suggest that high-energy particle collisions might produce distinct signatures, such as SUEPs, characterized by numerous low-momentum particles arranged in a spherical pattern within particle colliders like those used in the CMS experiment.

Challenges in Identifying SUEPs in Collider Events

"This is a highly distinct signature compared to Standard Model predictions. However, identifying a SUEP in a typical collider event is challenging due to the presence of several dozen simultaneous collisions, each generating numerous low-energy particles," Lavezzo explained.

Refining Trigger Mechanisms to Capture SUEP Events

"Additionally, our trigger mechanismscriteria determining which protonproton collisions are deemed noteworthy—are specifically configured to capture events involving high-energy particles, making it challenging to select those with naturally low energy."

New Strategies in Search of SUEPs

To overcome the challenges that hindered previous searches for these particles, the CMS Collaboration first ensured that the particle responsible for generating a SUEP—acting as the 'Portal' between the Standard Model and Hidden Valley models—recoiled against an SM particle, specifically a jet in their experiment. This recoil results in an event where both particles exhibit substantial yet balanced energy, enabling the event to be triggered on the SM jet.

Differentiating Between SUEPs and Standard Model Jets

"By employing this strategy, the SUEP's structure shifts from a spherical pattern to one resembling a broader version of an SM jet—s shower of particles from a quark," explained Lavezzo.

Challenges in Comparing Predictions to Experimental Observations

"The challenge now is to differentiate between SM jets and SUEPs. However, obtaining reliable predictions through our traditional methods proves difficult in these complex environments and events, which is essential for comparing our measurements to theoretical models and determining if there is any evidence of SUEPs or if the observations align with Standard Model expectations."

Innovative Methods for Estimating SM Contributions

The CMS collaboration chose to estimate the contribution of SM events directly from the data they gathered during their search. This was done by utilizing the extended-ABCD method, a method that helps assess the SM contribution in the signal region.

Successful Exclusion of SUEP Theorie's Phase Space

"We are the first team to conduct a search for SUEPs at colliders, and we successfully excluded a significant portion of the available phase space for SUEP theories. Additionally, we've established a set of methods that we hope will be further developed in future studies," stated Lavezzo. "The response from theorists, including Matt Strassler who originally proposed SUEPs, was incredibly positive. They were excited about our experimental findings, as it opens the door for testing more hypotheses."

Future Directions and Open Questions in SUEP Research

The recent search undertaken by this research group has provided new constraints that will inform future strategies for detecting SUEPs in particle colliders. Hidden Valley models suggest that SUEPs should be fully visible, meaning that all dark sector particles decay to Standard Model particles. However, this assumption may not necessarily apply.

The Possibility of Stable, Undetectable, SUEPs

"SUEPs may decay into the Standard Model after a certain lifespan, or some could remain stable and undetectable, leading to distinct signatures that previous searches might have missed," explained Lavezzo. "Further focused searches could be conducted in areas where our approach was not optimized; notably, low-mass portals remain largely unconstrained.

Source


"Stay ahead of groundbreaking discoveries in particle physics. Subscribe for more updates on SUEPs, dark sector theories, and collider research."

Labels: , , , , , , , , ,

Wednesday, December 11, 2024

semi dirac fermions zrsis physics breakthrough

Physicists Observe Directional Mass-Only Particle for the First Time

Diagram showing the discovery of semi-Dirac fermions in ZrSiS, demonstrating their directional massless behavior, significant for material science.

Introduction to the Discovery of Semi-Dirac Fermions

Researchers have successfully identified, for the first time, a semi-Dirac Fermion-a quasiparticle characterized by being massless in one direction and possessing mass in the other. Though hypothesized 16 years ago, it was only recently observed within a ZrSiS semi-metal crystal. This breakthrough holds promise for transformative applications in technologies such as sensors and batteries.

Researchers from Penn State and Columbia University recently unveiled their findings in Physical Review X.

The Surprise Discovery and Its Significance

Unanticipated Findings

"This discovery came as a complete surprise," said Yinming Shao, assistant professor of physics at Penn State and the study's lead author. "Our initial research was not focused on semi-Dirac ferminos, but unexpected signatures in the data led us to realize we had made the first observation of these remarkable quasiparticles, which alternately behave as if they have mass or are massless."

Understanding Massless Particles

Particles are considered massless when their energy originates entirely from motion, making them pure energy traveling at the speed of light. For instance, photons, the particles of light, are massless as they always move at light speed. Albert Einstein's special relativity states that no object with mass can achieve this velocity.

"In solid materials, the collective dynamics of numerous particles, referred to as quasiparticles, can exhibit properties distinct from those of individual particles. In this case, this phenomenon resulted in particles possessing mass in only one direction," Shao explained.

The Concept of Semi-Dirac Ferminos and Their Theoretical Origins

Theoretical Predictions

The existence of Semi-Dirac ferminos was first proposed between 2008 and 2009 by multiple research teams, including scientists from Université Paris Sud in France and the University of California, Davis. Theoretical models suggested that these quasiparticles would exhibit directional mass-shifting behavior, appearing massless along one axis while possessing mass along another.

Unexpected Observation

After 16 years, Shao and his collaborators accidentally identified the predicted quasiparticles through magneto-optical spectroscopy, a technique that uses infrared light and a strong magnetic field to study reflected light. Their goal to examine quasiparticle properties in silver-colored ZrSiS crystals.

Landau level spectroscopy provides insights into semi-Dirac fermions at the inter-section of two nodal lines within a semi-metal material. (Left: Fermi surface of a nodal-line crossing model; Right: Band structure of the material). Credit: Yinming Shao.

The Experiment and Methods Used

Magneto-Optical Spectroscopy at the National High Magnetic Field Laboratory

The experiments were carried out at the National High Magnetic Field Laboratory in Florida, which houses the world's most powerful hybrid magnet. This magnet generates a sustained magnetic field approximately 900,000 times stronger than Earth's magnetic fieldstrong enough to levitate small objects like water droplets.

Conducting the Experiments at Extremely Low Temperatures

The researchers reduced the temperature of a ZrSiS sample to -452°F, just a few degrees above absolute zero, before subjecting it to the lab's strong magnetic field and illuminating it with infrared light to investigate the quantum interactions within the material.

Analyzing the Unusual Results

"We were investigating how the material's electrons respond to light, focusing on their optical response," said Shao. "By analyzing the light signals, we hoped to uncover any intriguing aspects of the material's underlying physics. What are found was a mix of expected features typical of a semi-metal crystal, along with surprising phenomena that left us completely puzzled."

Uncovering the Semi-Dirac Fermion Behavior

Unexpected Magnetic Field Behavior

"When a magnetic field is applied to a material, the energy levels of its electrons are quantized into distinct Landau levels," Shao explained. "These levels are discrete, similar to climbing stairs with no intermediate steps. The spacing between them is determined by the electron's mass and the strength of the magnetic field. As the magnetic field intensifies, the energy levels should increase in fixed increments based on the electron's massyet, in this case, that didn't happen."

Identifying the Power Law and Collaboration with Theoretical Physicists

By utilizing the powerful magnet in Florida, the researchers discovered that the energy transitions of the Landau levels in the ZrSiS crystal exhibited an entirely unexpected relationship with the strength of the magnetic field. This distinct pattern, identified by theorists years ago as the 'B2/3 power law,' is a hallmark characteristic of semi-Dirac fermions.

Explaining the Particle Behavior

A Model for Electron Behavior in ZrSiS

To unravel the unusual behavior they observed, the experimental physicists collaborated with theoretical physicists to create a model that explained the electronic structure of ZrSiS. Their focus was on the possible paths along which electrons could move and intersect, in order to understand how electrons in the material were losing mass when traveling in one direction but not in another.

Understanding the Massless and Massive Transitions

"Picture the particle as a miniature train confined to a network of tracks, which represent the material's fundamental electronic structure," explained Shao. "At specific intersections, the particle train moves along a fast track at light speed, but when it encounters an intersection and switches to a perpendicular track, it suddenly gains resistance and mass. In this way, the particles either remain pure energy or acquire mass depending on the direction they travel along the material's 'tracks.'"

Implications for Future Technologies

The Role of ZrSiS in Emerging Technologies

The team's analysis revealed the presence of semi-Dirac fermions at the crossing points. These particles were massless when moving along a linear path but acquired mass when traveling in a perpendicular direction. Shao further explained that ZrSiS is a layered material, similar to graphite, composed of carbon atom layers that can be exfoliated into graphene sheets just one atom thick. Graphene plays a vital role in the development of emerging technologies, such as batteries, supercapacitors, solar cells, sensors, and biomedical devices.

Looking Ahead: Unresolved Questions and Future Research

"This is a layered material," said Shao. "Once we figure out how to isolate a single layer of this compound, we could harness the unique properties of semi-Dirac fermions and control them with the same precision that we do with graphene. However, the most exciting aspect of this experiment is that the data we collected cannot yet be fully explained. There are still many unresolved questions, and our focus is on understanding them."

Source


"Stay ahead in the world of cutting-edge material sciencesubscribe to our newsletter for the latest discoveries and breakthroughs in physics!"

Labels: , , , , , , , ,

Tuesday, December 10, 2024

alice-antimatter-hyperhelium4-evidence-lhc

ALICE Unveils First Evidence of Antimatter Hyperhelium-4 Partner

Graph showing data from ALICE experiment at LHC revealing first evidence of antihyperhelium-4 particle and its comparison to the predicted model.

Introduction: The Role of the Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) facilitates collisions between heavy ions, generating quarkgluon plasmaa hot, dense state of matter believed to have existed a millionth of a second after the Big Bang. These collisions also offer an ideal environment for the formation of atomic nuclei, exotic hypernuclei, and their antimatter equivalents, including antinuclei and antihypernuclei.

Importance of Hypernuclei Research

The study of these matter forms is vital for multiple objectives, including:

  • Deciphering how hadrons emerge from quarks and gluons in the plasma
  • Exploring the matter-antimatter imbalance in the universe today

What are Hypernuclei?

Exotic Nuclear Structures

Hypernuclei are exotic nuclear structures composed of protons, neutrons, and hyperonsunstable particles that include one or more strange quarks. Despite their discovery in cosmic rays over 70 years ago, hypernuclei continue to captivate physicists due to their rarity in nature and the challenges associated with their creation and study in laboratory settings.

Hypernuclei Production in Heavy-Ion Collisions

Hypernuclei are produced in substantial numbers during heavy-ion collisions; however, until recently, only the lightest hypernucleus, the hypertriton, and its antimatter counterpart, the antihypertrition, have been detected. The hypertrition consists of a proton, a neutron, and a lambda particle (a hyperon with one strange quark), while the antihypertrition is composed of an antiproton, an antineutron, and an antilambda.

Antimatter Hypernuclei: A Milestone Discovery

First Evidence of Antihyperhelium-4

After the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC) reported the observation of antihyperhydrogen-4 earlier this yeara bound state comprising an antiproton, two antineutrons, and an antilambda-the ALICE collaboration at the LHC has now provided the first evidence of antihyperhelium-4. This exotic particle is made up of two antiprotons, an antineutron, and an antilambda.

Significance of the Discovery

This result, showing a significance of 3.5 standard deviations, marks the first evidence of the heaviest antimatter hypernucleus observed at the LHC. The findings have been made available on the arXiv preprint server.

ALICE Experiment and Methodology

The 2018 Lead-Lead Collision Data

The ALICE experiment utilized lead-lead collision data from 2018, with an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). Employing an advanced machine-learning technique that exceeds the performance of standard hypernuclei search approaches, ALICE researchers examined the data for signs of hyperhydrogen-4, hyperhelium-4, and their antimatter equivalents.

Detection and Analysis Process

To identify candidates for (anti) hyperhydrogen-4, researchers searched for the (anti) helium-4 nucleus and the charged pion produced during its decay. In contrast, candidates for (anti) hy perhelium-4 were detected through their decay into an (anti) helium-3 nucleus, an (anti)  proton, and a charged  pion.

Measured Masses and Production Yields of Hypernuclei

Consistency with World-Average Values

The ALICE team not only found evidence of antihyperhelium-4 a significance of 3.5 standard deviations and antihyperhydrogen-4 with a significance of 4.5 standard deviations, but also measured the production yields and masses of both hypernuclei.

Both hypernuclei showed measured masses that are consistent with the current world-average values. The production yields were also analyzed and compared with predictions made by the statistical hadronization model, which accurately depicts hadron and nucleus formation in heavy-ion collisions.

Statistical Hadronization Model Predictions

The comparison shows that the statistical hadronization model's predictions are consistent with the data when both excited and ground states of hypernuclei are factored in. This supports the model's effectiveness in describing hypernuclei production, which are small, dense entities measuring roughly 2 femtometers in diameter (with 1 femtometer equal to 10¯¹⁵ meters).

Conclusion: Contribution to Understanding Matter and Antimatter

The researchers measured the antiparticle-to-particle yield ratios for both hypernuclei and found them to be consistent with unity, within the bounds of experimental uncertainty. This consistency aligns with ALICE's findings of equal matter and antimatter production at LHC energies and contributes to the broader study of the matter-antimatter imbalance in the universe.

Source


"Explore more on the groundbreaking research from ALICE at LHC and stay updated on developments in particle physics and antimatter studies."

Labels: , , , , , , ,

Saturday, December 7, 2024

decade neutrino research cosmic mysteries

Unlocking the Universe: Physicists Plan a Decade of Neutrino Research to Solve Cosmic Mysteries

An underground neutrino detector used in DUNE experiment for cosmic research.

Introduction to Neutrino Research

Physicists are on the brink of uncovering answers to fundamental cosmic mysteries by delving deeper into the properties of subatomic particles.

Professor Alexandre Sousa of the University of Cincinnati has published a paper forecasting global neutrino research developments for the next decade.

The Importance of Neutrinos in Physics

What Are Neutrinos?

Neutrinos, the universe's most plentiful massive particles, have become a key focus for scientists seeking deeper insights into their properties.

Origins and Behavior of Neutrinos

Neutrinos are produced during nuclear fusion in the sun, radioactive decay in reactors or Earth's crust, and particle accelerator experiments. They oscillate among three distinct flavors as they travel.

The Quest for a Fourth Neutrino: The Sterile Neutrino

The Hypothesis of the Sterile Neutrino

However, unexpected experimental findings led physicists to hypothesize the existence of a fourth neutrino type, termed the sterile neutrino, which is unaffected by three of the four fundamental forces.

  • "In theory, it interacts only with gravity, remaining unaffected by the weak nuclear force, strong nuclear force, or electromagnetic force," Sousa explained.

The Collaborative Effort: Snowmass 2021/2022

An Overview of the White Paper

Sousa and his collaborators address perplexing experimental anomalies in neutrino research in a white paper recently published in Journal of Physics G: Nuclear and Particle Physics. This work stems from the Particle Physics Community Planning Exercise, known as "Snowmass 2021/2022."

The Role of High-Energy Physics Experts

Every decade, experts in high-energy physics convene to shape the direction of particle physics in the U.S. and with global collaborators.

The Team Behind the Research

The paper also included contributions from UC Professor Jure Zupan, Associate Professor Adam Aurisano, visiting scholar Tarak Thakore, postdoctoral fellow Michael Wallbank, and physics students Herilala Razafinime and Miriama Rajaoalisoa.

Progress and Challenges in Neutrino Physics

Key Areas of Focus

According to Zupan, progress in the field of neutrino physics is expected to occur on various fronts.

In addition to the search for sterile neutrinos, Zupan mentioned that physicists are investigating various experimental anomaliesdiscrepancies between data and theoretical predictionsthat will soon be tested with upcoming experiments.

The Nobel Prize and Its Implications

Gaining deeper insights into neutrinos could revolutionize our long-held views on physics. Neutrino research has already earned the highest scientific accolade, the Nobel Prize, with the discovery of neutrino oscillations awarded in 2015. Nations, including the United States, are committing billions of dollars to these initiatives due to their profound scientific significance.

Why Neutrinos Matter: Addressing Cosmic Questions

The Matter-Antimatter Dilemma

A key question in physics is why the universe contains more matter than antimatter, despite the Big Bang theoretically producing both in equal amounts. According to Sousa, neutrino research may hold the answer.

  • "While it may not impact your daily life, our goal is to understand the reason for our existence," Sousa said. "Neutrinos ap pear to be central to addressing these profound questions."

Major Neutrino Research Initiatives

The Deep Underground Neutrino Experiment (DUNE)

Sousa is involved in one of the most significant neutrino research initiatives, the Deep Underground Neutrino Experiment (DUNE), managed by the Fermi National Accelerator Laboratory. The project involves excavating the former Homestake gold mine to a depth of 5,000 feet to house neutrino detectors. Sousa noted that the elevator ride alone takes approximately 10 minutes to reach the detector chambers.

Researchers place detectors deep underground to protect them from cosmic rays and background radiation, which facilitates the isolation of particles created in experiments.

Project Overview

The experiment, scheduled to launch in 2029, will initially use two detector modules to measure atmospheric neutrinos. By 2031, Fermilab researchers will direct a high-energy neutrino beam 800 miles through Earth to the detector in South Dakota, as well as one in Illinois. the initiative involves over 1,400 international engineers, physicists, and scientists.

Technical and Scientific Goals

Sousa remarked that with these two detector modules and the most powerful neutrino beam to date, significant advancements are possible. The launch of DUNE is anticipated to be highly exciting and will be the most sophisticated neutrino experiment ever conducted.

The paper was a substantial effort, involving over 170 contributors from 118 universities and institutes, supported by 14 editors, including Sousa.

  • "The project was a prime example of teamwork involving scientists from varied backgrounds. Although not always straightforward, seeing is truly gratifying," he commented.

NOvA Experiment

At the same time, Sousa and UC's Aurisano are participating in another Fermilab neutrino experiment known as NOvA, which explores the mechanisms behind neutrino flavor changes. In June, their research team shared their accurate neutrino mass measurements to date.

Hyper-Kamiokande (Hyper-K)

Hyper-Kamiokande, or Hyper-K, is another significant neutrino observatory and experiment currently being built in Japan, with operations potentially starting by 2027. It, too, seeks evidence of sterile neutrinos and explores other research questions.

Future Outlook and Collaborative Efforts

A Decade of Research and Global Participation

According to Sousa, "The combination of these findings, particularly when considered alongside DUNE, will yield highly significant results. Together, these experiments will greatly enhance our understanding. We expect to have some answers by the 2030s."

The Potential of Neutrino Physics

Zupan from UC stated that these multibillion-dollar initiatives have the potential to provide answers to fundamental questions regarding matter, antimatter, and the universe's origins.

Zupan explained that, so far, the only parameter in particle physics that has been found to have a nonzero value is connected to quark properties. The possibility of a comparable property for neutrinos is still an open and fascinating question.

The Road Ahead

Sousa mentioned that researchers globally are engaged in numerous neutrino experiments that could yield answers or spark new questions.

Source


"Stay informed on groundbreaking neutrino discoveries by subscribing to our updates or exploring related articles on our site."

Labels: , , , , , , , ,