Skip to main content

Mini brain machine interface for real time neural processing

EPFL Unveils Miniaturized Brain-Machine Interface

Introduction

Brain-Machine Interface

Breakthrough Technology

EPFL's research team has unveiled a state-of-the-art miniaturized brain-machine interface, enabling direct brain-to-text communication on diminutive silicon chips.

Overview of Brain-Machine Interfaces (BMIs)

Historical Context

Brain-Machine Interfaces (BMIs) are increasingly recognized as a viable means of restoring communication and control for those with severe motor impairments. Historically, these systems have been cumbersome, energy-intensive, and constrained in their practical use.

New Development

Scientists at EPFL have created the first high-performance Miniaturized Brain-Machine Interface (MiBMI), presenting a remarkable small, low-power, highly accurate, and versatile technology.

Technological Advancements

Publication and Presentation

Published in the most recent IEEE Journal of Solid-State Circuits and showcased at the International Solid-State Circuits Conference, the MiBMI significantly improves the efficiency and scalability of brain-machine interfaces, paving the way for fully implantable devices.

Potential Impact

This technology has the potential to greatly enhance the quality of life for patients suffering from conditions like amyotrophic lateral sclerosis (ALS) and spinal cord injuries.

Design and Practicality

The MiBMI's compact design and low power consumption are pivotal, making it ideal for implantable applications. Its minimal invasiveness enhances safety and practicality for clinical and real-world use.

Integration and Innovation

This fully integrated system, where recording and processing occur on two ultra-compact chips totaling 8mm², represents the latest innovation in low-power BMI devices developed at Mahsa Shoaran's Integrated Neurotechnologies Laboratory (INL) within EPFL's IEM and Neuro X institutes.

Functionality and Performance

Translation of Neural Signals

"MiBMI enables the translation of complex neural signals into readable text with exceptional accuracy and minimal power usage. This development moves us closer to practical, implantable solutions that could greatly improve communication for those with severe motor impairments," says Shoaran.

Brain-to-Text Conversion

Brain-to-Text conversion entails interpreting neural signals produced when an individual envisions writing letters or words. This process uses electrodes implanted in the brain to capture neural activity related the motor functions of handwriting.

Real-Time Processing

The MiBMI chipset processes these neural signals in real time, converting the intended hand movements from the brain into digital text. This technology enables individuals, particularly those with locked-in syndrome and severe motor impairments, to communicate by merely thinking about writing, with the interface translating their thoughts into readable text displayed on a screen.

Achievements and Capabilities

Current Performance

"Although the chip has yet to be integrated into a functional BMI system, it has demonstrated its capability by processing data from earlier live recordings, including those from the Shenoy lab at Stanford, and achieving 91% accuracy in converting handwriting activity into text," says lead author Mohammed Ali Shaeri.

Character Decoding

With the ability to decode up to 31 characters, the chip surpasses other integrated systems. "We believe we can decode up to 100 characters, but we are still awaiting a handwriting dataset with a larger variety," says Shaeri.

Data Processing

Current brain-machine interfaces collect data from electrodes implanted in the brain and then send these signals to an external computer for decoding. The MiBMI chip, however, performs both recording and real-time processing of data, featuring a 192-channel neural recording system and a 512-channel neural decoder.

neurotechnological

Future Prospects

Neurotechnological Innovation

This neurotechnological advancement exemplifies remarkable miniaturization, integrating specialized knowledge in circuits, neural engineering, and AI. It is particularly significant in the rapidly growing neurotech startup sector within the BMI space, where miniaturization and integration are central. EPFL's MiBMI offers promising prospects for the future of the field.

New Data Analysis Strategy

Researchers had to develop a new data analysis strategy to mange the large volume of information form the miniaturized BMI's electrodes. They discovered that each letter's brain activity, as visualized by the patient, contians unique markers called distinctive neural codes (DNCs).

Efficiency of Processing

The microchiprocesses only around a hundred bytes of distinctive neural codes (DNCs) per letter, rather than the thousands of bytes typically required. This streamlining results in a fast, accurate system with low power consumption and shorter training periods, simplifying BMI usage and making it more accessible.

Collaborations and Future Research

Ongoing Collaborations

Collaborations with team at EPFL's Neuro-X and IEM Institutes, including Gregoire Courtine, Silvestro Micera, Stephanie Lacour, and David Atienza, are paving the way for the next generation of integrated BMI sustems. Shoaran, Shaeri, and their team are also investigating additional applications for the MiBMI system beyond handwriting recogniation.

Expanding Applications

"We are working with various research teams to evaluate the system across different applications, including speech decoding and movement control. Our aim is to create a flexible BMI that can be adapted to a range of neurological conditions, offering diverse solutions for patients," states Shoaran.

Source

Comments

Popular posts from this blog

NASA chile scientists comet 3i atlas nickel mystery

NASA and Chilean Scientists Study 3I/ATLAS, A Comet That Breaks the Rules Interstellar visitors are rare guests in our Solar System , but when they appear they often rewrite the rules of astronomy. Such is the case with 3I/ATLAS , a fast-moving object that has left scientists puzzled with its bizarre behaviour. Recent findings from NASA and Chilean researchers reveal that this comet-like body is expelling an unusual plume of nickel — without the iron that typically accompanies it. The discovery challenges conventional wisdom about how comets form and evolve, sparking both excitement and controversy across the scientific community. A Cosmic Outsider: What Is 3I/ATLAS? The object 3I/ATLAS —the third known interstellar traveler after "Oumuamua (2017) and 2I/Borisov (2019) —was first detected in July 2025 by the ATLAS telescope network , which scans he skies for potentially hazardous objects. Earlier images from Chile's Vera C. Rubin Observatory had unknowingly captured it, but ...

bermuda triangle rogue waves mystery solved

Bermuda Triangle Mystery: Scientist Claims Rogue Waves May Explain Vanishing Ships and Aircraft for decades, the Bermuda Triangle has captured the world's imagination, often described as a supernatural hotspot where ships vanish and aircraft disappear without a trace. From ghostly ships adrift to unexplained plane crashes, this stretch of ocean between Bermuda, Puerto Rico and Florida remains one of the most infamous maritime mysteries. But now, Dr. Simon Boxall, an oceanographer at the University of Southampton , suggests the answer may not be extraterrestrial at all. Instead, he argues that the truth lies in rogue waves — giant, unpredictable surges of water capable of swallowing even the largest ships within minutes. The Bermuda Triangle: A Legacy of Fear and Fascination The Bermuda Triangle has inspired decades of speculation , with theories ranging from UFO abductions to interdimensional rifts. Popular culture, documentaries and countless books have kept the legend alive, of...

nist breakthrough particle number concentration formula

NIST Researchers Introduce Breakthrough Formula for Particle Number Concentration Understanding the number of particles in a sample is a fundamental task across multiple scientific fields — from nanotechnology to food science. Scientists use a measure called Particle Number Concentration (PNC) to determine how many particles exist in a given volume, much like counting marbles in a jar. Recently, researchers at the National Institute of Standards and Technology (NIST) have developed a novel formula that calculates particle concentrations with unprecedented accuracy. Their work, published in Analytical Chemistry , could significantly improve precision in drug delivery, nanoplastic assessment and monitoring food additives. Related reading on Nanotechnology advancements: AI systems for real-time flood detection . What is Particle Number Concentration (PNC)? Defining PNC Particle Number Concentration indicates the total count of particles within a specific volume of gas or liquid,...