Skip to main content

stable superconductivity ambient pressure

Physicists Achieve Stable Superconductivity at Ambient Pressure

Breakthrough in Ambient-Pressure Superconductivity

The multi-functional measurement apparatus utilized in the pressure-quenching experiments is capable of reaching temperatures as low as 1.2 K (-457°F). Credit: University of Houston.

Researchers at the University of Houston's Texas Center for Superconductivity have reached another groundbreaking milestone in their pursuit of ambient-pressure high-temperature superconductivity, advancing the quest for superconductors that function in real-world conditions and paving the way for next-generation energy-efficient technologies.

Investigating Superconductivity in Bi₀.₅Sb₁.₅Te₃ (BST)

Research by Liangzi Deng and Paul Ching-Wu Chu

Professors Liangzi Deng and Paul Ching-Chu of the UH Department of Physics investigated the induction of superconductivity in Bi₀.₅Sb₁.₅Te₃ (BST) under pressure while preserving its chemical and structural properties, as detailed in their study, "Creation, stabilization, and investigation at ambient pressure of pressure-induced superconductivity in Bi₀.₅Sb₁.₅Te₃" published in the Proceeding of the National Academy of Sciences.

Link Between Pressure, Topology, and Superconductivity

"The idea that high-pressure treatment of BST might reconfigure its Fermi surface topology and enhance thermoelectric performance emerged in 2001," Deng stated. "That intricate relationship between pressure, topology and superconductivity drew our interest."

Challenges in High-Pressure Superconductors

Metastable States and Practical Limitations

"As materials scientist Pol Duwez once observed, most industrially significant solids exist in a metastable state," Chu explained. "The challenge lies in the fat that many of the most intriguing superconductors require high pressure to function, making them difficult to analyze and even more challenging to implement in real-world applications."

Deng and Chu's innovation offers a solution to this pressing issue.

The Pressure-Quench Protocol (PQP) - A Key Innovation

The Magnetization Property Measurement System (MPMS) enables ultra-sensitive magnetization assessments with high precision. Credit: University of Houston.

Deng and Chu pioneered the pressure-quench protocol (PQP), a method introduced in an October UH news release, to stabilize BST's superconducting states at ambient pressureremoving the necessity for high-pressure environments.

Significance of This Discovery

A Novel Approach to Material Phases

Why is this significant? It introduces a novel approach to preserving valuable material phases that typically require high-pressure conditions, enabling both fundamental research and practical applications.

Evidence of High-Pressure Phase Stability

"This experiment provides clear evidence that high-pressure-induced phases can be stabilized at ambient pressure through a delicate electronic transition, without altering symmetry," Chu stated. "This breakthrough opens new possibilities for preserving valuable material phases typically confined to high-pressure conditions and could aid in the quest for superconductors with higher transition temperatures."

Exploring New States of Matter

"Remarkably, this experiment unveiled a groundbreaking method for identigying new states of matter that neither naturally exist at ambient pressure nor emerge under high-pressure conditions," Deng noted. "It underscores PQP's potential as a powerful tool for mapping and expanding material phase diagrams."

Source


Stay Ahead of Scientific Breakthroughs!

Physicists at the University of Houston have unlocked a new path to stable superconductivity at ambient pressure, paving the way for next-generation energy-efficient technologies. This revolutionary advancement could transform materials science, energy storage, and beyond.

Want to learn more about cutting-edge scientific discoveries?

Explore more in-depth research and technological advancements on our trusted platforms:

Health & Science News: Human Health Issues

Latest Science & Innovation: FSNews365

Environmental Science & Sustainability: Earth Day Harsh Reality

Read the Full Story: Physicists Achieve Stable Superconductivity at Ambient Pressure


Comments

Popular posts from this blog

NASA chile scientists comet 3i atlas nickel mystery

NASA and Chilean Scientists Study 3I/ATLAS, A Comet That Breaks the Rules Interstellar visitors are rare guests in our Solar System , but when they appear they often rewrite the rules of astronomy. Such is the case with 3I/ATLAS , a fast-moving object that has left scientists puzzled with its bizarre behaviour. Recent findings from NASA and Chilean researchers reveal that this comet-like body is expelling an unusual plume of nickel — without the iron that typically accompanies it. The discovery challenges conventional wisdom about how comets form and evolve, sparking both excitement and controversy across the scientific community. A Cosmic Outsider: What Is 3I/ATLAS? The object 3I/ATLAS —the third known interstellar traveler after "Oumuamua (2017) and 2I/Borisov (2019) —was first detected in July 2025 by the ATLAS telescope network , which scans he skies for potentially hazardous objects. Earlier images from Chile's Vera C. Rubin Observatory had unknowingly captured it, but ...

Quantum neural algorithms for creating illusions

Quantum Neural Networks and Optical Illusions: A New Era for AI? Introduction At first glance, optical illusions, quantum mechanics, and neural networks may appear unrelated. However, my recent research in APL Machine Learning Leverages "quantum tunneling" to create a neural network that perceives optical illusions similarly to humans. Neural Network Performance The neural network I developed successfully replicated human perception of the Necker cube and Rubin's vase illusions, surpassing the performance of several larger, conventional neural networks in computer vision tasks. This study may offer new perspectives on the potential for AI systems to approximate human cognitive processes. Why Focus on Optical Illusions? Understanding Visual Perception O ptical illusions mani pulate our visual  perce ption,  presenting scenarios that may or may not align with reality. Investigating these illusions  provides valuable understanding of brain function and dysfunction, inc...

fractal universe cosmic structure mandelbrot

Is the Universe a Fractal? Unraveling the Patterns of Nature The Cosmic Debate: Is the Universe a Fractal? For decades, cosmologists have debated whether the universe's large-scale structure exhibits fractal characteristics — appearing identical across scales. The answer is nuanced: not entirely, but in certain res pects, yes. It's a com plex matter. The Vast Universe and Its Hierarchical Structure Our universe is incredibly vast, com prising a p proximately 2 trillion galaxies. These galaxies are not distributed randomly but are organized into hierarchical structures. Small grou ps ty pically consist of u p to a dozen galaxies. Larger clusters contain thousands, while immense su perclusters extend for millions of light-years, forming intricate cosmic  patterns. Is this where the story comes to an end? Benoit Mandelbrot and the Introduction of Fractals During the mid-20th century, Benoit Mandelbrot introduced fractals to a wider audience . While he did not invent the conce pt —...